
Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 1

DIGITAL CIRCUITS AND EMBEDDED SYSTEMS LAB
MANUAL

(As per KTU Syllabus 2015)

Version 2

July 2019

DEPT. OF ELECTRICAL ENGINEERING

COLLEGE OF ENGINEERING TRIVANDRUM

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 2

PREFACE

 This manual is prepared as per the BTech Degree syllabus for Digital Circuits and Embedded

Systems Lab in Electrical and Electronics Engineering of A P J Abdul Kalam Technical University.

This manual consists of a set of experiments designed to allow students to build, and verify digital

circuits, microprocessor and embedded systems. This set of experiments/programs cover relevant topics

prescribed in the syllabus and are designed to reinforce the theoretical concepts taught in the classroom

with practical experience in the lab.

 We take this opportunity to express thanks to Dr. P Sreejaya, Professor and Head of the dept.

of Electrical Engineering for her continued interest and encouragement for this work. We are also

thankful to all faculty members of Electrical Engineering department for their cooperation in the

preparation of this reference record.

 This is the revised version of the manual that was prepared in 2017. Every effort has been taken

for the correctness of the subject dealt with, suggestions and remarks are welcome.

 Chief Co-ordinator : Dr. Sreejaya P

 Head of the Department

 Prepared and compiled by : Dr. Lal Priya P S/ Prof. Vivek R S

 Lab – in – charge

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 3

DEPARTMENT VISION AND MISSION

VISION

 Be a centre of excellence and higher learning in Electrical Engineering and allied

areas.

MISSION

 To impart quality education in Electrical Engineering and bring-up professionally

competent engineers.

 To mould ethically sound and socially responsible Electrical Engineers with

leadership qualities.

 To inculcate research attitude among students and encourage them to pursue

higher studies

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 4

Syllabus

3rd Semester B.Tech (Electrical Engineering)

 Year of Introduction 2016

EE331 DIGITAL CIRCUITS AND EMBEDDED SYSTEMS LAB 0-0-3

DIGITAL CIRCUITS EXPERIMENTS :

 (at least 7 experiments are mandatory)

1. Realisation of SOP & POS functions after K map reduction

2. Half adder & Full adder realization using NAND gates

3. 4-bit adder/subtractor & BCD adder using IC 7483

4. BCD to decimal decoder and BCD to 7-segment decoder & display

5. Study of multiplexer IC and Realization of combinational circuits using

 multiplexers.

6. Study of counter ICs (7490, 7493)

7. Design of synchronous up, down & modulo N counters

8. Study of shift register IC 7495, ring counter and Johnsons counter

9. VHDL implementation of full adder, 4 bit magnitude comparator

 EMBEDDED SYSTEM EXPERIMENTS:

 (Out of first six, any two experiments using 8085 and any two using 8086. Out of

 the last 3 experiments, any two experiments using 8051 or any other open source

 hardware platforms like PIC, Arduino, MSP430, ARM etc) (at least 5 experiment

 are mandatory)

1. Data transfer instructions using different addressing modes and block transfer.

2. Arithmetic operations in binary and BCD-addition, subtraction, multiplication and

 division

3. Logical instructions- sorting of arrays in ascending and descending order

4. Binary to BCD conversion and vice versa.

5. Interfacing D/A converter- generation of simple waveforms-triangular wave, ramp

 etc

6. Interfacing A/D converter

7. Square wave generation.

8. LED and LCD display interfacing

9. Motor control

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 5

CO1
 Describe basic concepts of digital system components such as basic

Gates,Adder, Flip Flops, Counters, Multiplexers, Registers, Decoders

CO2

Verify experimentally SOP & POS solutions, functions 4-bit

Adder/Subtractor, 4 bit Counters, 4bit

Registers, 8-1 Multiplexers, 4-10 Decoders.

CO3
 Develop and execute programmes to perform data transfer, arithmetic /

logical operations and code conversions using 8085

CO4
 Interface A/D & D/A CONVERTERS and LED/LCD display to control a

motor.

CO5 Design an embedded system for a particular application

 Course Outcomes

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 6

Program Educational Objectives (PEOs)

Graduates will

1. Excel as technically competent Electrical Engineers.

2. Excel in higher studies and build on fundamental knowledge to develop technical skills within and

across disciplines.

3. Have an ability to function effectively as members or leaders in technical teams.

4. Adapt to changes in global technological area and social needs through lifelong learning.

Program outcomes

PO1 Apply the knowledge of mathematics, science and engineering fundamentals and an

engineering specialization to the solution of complex engineering problems.

PO2 Identify, formulate, review research literature and analyse complex engineering problems

reaching substantiated conclusions using first principles of mathematics, natural sciences and

engineering sciences

PO3 Design solutions for complex engineering problems and design system components or

processes that meet the specific needs with appropriate consideration for the public health and

safety, and the cultural, societal and environmental considerations

PO4 Use research based knowledge and research methods including design of experiments,

analysis and interpretation of data, and synthesis of the information to provide valid

conclusions.

PO5 Create, select and apply appropriate techniques, resources and modern engineering and IT

tools including predictions and modelling to complex engineering activities with an

understanding of the limitations.

PO6 Apply reasoning informed by the contextual knowledge to assess social, health, safety, legal

and cultural issues and the consequent responsibilities relevant to the professional engineering

practice.

PO7 Understand the impact of the professional engineering solutions in societal and environmental

contexts, and demonstrate the knowledge of and need for sustainable development.

PO8 Apply ethical principles and commit to professional ethics and responsibilities and norms of

the engineering practice.

PO9 Function effectively as an individual and as a member or leader in diverse teams and in

multidisciplinary settings.

PO10 Communicate effectively on complex engineering activities with the engineering community

and with society at large, such as, being able to comprehend and write effective reports and

design documentation, make effective presentation and give and receive clear instructions.

PO11 Demonstrate knowledge and understanding of the engineering and management principles

and apply these to one’s work, as a member and leader in a team to manage projects and

multidisciplinary environments.

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 7

PO12 Recognize the need for and have the preparation and ability to engage in independent and life-

long learning in the broadest context of technological change.

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 8

CONTENTS

 Sl. No. Content Page no:

 I Digital Circuits Lab Experiments 8

1. Familiarisation of logic gates 10

2. Realisation of SOP and POS functions 16

3. Half adder and Full adder realisation 21

4. 4-Bit adder/subtractor and BCD adder using IC7483 25

5. (a) BCD to Decimal decoder 29

(b) BCD to seven segment decoder and display 31

6. (a) Study of multiplexer ICs 35

(b) Realisation of combinational circuits using multiplexers 39

7. Study of counter ICs (IC7490 and IC7493) 41

8. Design of synchronous up, down and modulo N counters 44

9. Study of IC 7495, ring counter and Johnsons counter 49

10. VHDL implementation of full adder and 4 bit magnitude comparator 54

 II Microprocessor and Embedded Systems Lab Experiments 62

1. Data transfer instructions using different addressing modes

 and block transfer 63

2. Arithmetic operations in binary and BCD 67

3. Logical instructions sorting of arrays 76

4. Binary to BCD conversion and viceversa 79

5. Interfacing D/A converter 82

6. Interfacing A/D converter 85

7. Blinking LED 89

8. Square wave generation 91

9. LED and LCD display interfacing 93

10. Motor control 100

 III Appendix 104

 IV Standard References 108

 V Rubrics 109

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 9

 I. DIGITAL CIRCUITS LAB EXPERIMENTS

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 10

1. FAMILIARISATION OF LOGIC GATES

Aim

To verify the truth tables of TTL AND, OR, NOT, NAND, NOR and XOR gates.

Basic TTL gates

Commonly used basic TTL gates are:

7408 Quad two input AND gates 7432 Quad two input OR gates

7404 Hex inverters 7400 Quad two input NAND gates

7402 Quad two input NOR gates 7486 Quad two input XOR gates

Truth Tables

The logic symbols for AND, OR, NOT, NAND, NOR and XOR gates are given in figure 1.1.

The truth tables of AND, OR, NOT, NAND, NOR and XOR gates are given below.

AND gate

 Input

Output

A B Y=A.B

0 0 0

0 1 0

1 0 0

1 1 1

OR gate

 Input

Output

A B Y=A+B

0 0 0

0 1 1

1 0 1

1 1 1

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 11

NOT gate

Input

Output

A 𝑌 = �̅�

0 1

1 0

NAND gate

Input

Output

A

B

Y=𝐴. 𝐵̅̅ ̅̅ ̅

0 0 1

0 1 1

1 0 1

1 1 0

NOR gate

Input

Output

A

B

Y=𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅

0 0 1

0 1 0

1 0 0

1 1 0

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 12

XOR gate

Input

Output

A

B

 Y=𝐴 ⊕ 𝐵

0 0 0

0 1 1

1 0 1

1 1 0

 Figure 1.1 Logic symbols of gates

The pin details of ICs are given in figure 1.2.

 Figure 1.2.a IC 7408 Figure 1.2.b IC 7432

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 13

 Figure 1.2.c IC 7404

 Figure 1.2.d IC 7400 Figure 1.2.e IC7402

 Figure 1.2.f IC 7486

Procedure

1.1. AND gate

 Identify the terminals of IC 7408 and connect one gate from the quad AND gates of the IC

as in figure 1.2.a. Connect 5 V dc between VCC and GND terminals. The positive terminal of

the supply must be connected to the VCC terminal. The LED connected between VCC and the

output terminal is used to indicate the logic state of the gate. Using 0 V for the logic 0 input and

+ 5V for logic 1 input, determine the logic states of the output for various combination of the

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 14

input by noting whether the LED is glowing or not. When the LED is glowing, the logic output

is zero and when not glowing, it is 1.

1.2. OR GATE

Connect one out of the four OR gates of the IC 7432 as in figure 1.2.b.Verify the truth table of

the OR gate as in the case of AND gate.

1.3. NOT (Inverter) gate

Verify the truth table of the NOT gate by connecting one of the six inverter gates of IC 7404 as

in figure 1.2.c

1.4. NAND gate

Connect one gate of the four two input NAND gates of the IC 7400 as in figure 1.2.d. Verify the

truth table of the NAND gate.

1.5. NOR gate

Wire up the circuit of figure 1.2.e. using one of the four two input NOR gates of IC 7402. Verify the

truth table by applying various input combination and observing the output.

1.6. XOR gate

Connect one XOR gate of the four gates of IC 7486 as in figure 1.2.f. Verify the truth table of the

XOR gate given above.

 Questions

1. Make a NOT gate using (a) a 2 input NAND gate (b) a 3 input NAND gate.

2. How will you use a 3-input (a) NAND gate as a 2-input NAND gate (b) OR gate as a 2input OR

gate

3. What are the values of the voltages measured at the output of a TTL gate corresponding to 0 and 1

levels respectively?

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 15

4. Comment on the magnitude and direction of the input/output current of a gate corresponding to 0

level and 1 level.

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 16

2. Realisation of SOP and POS Functions

 Aim

1. To verify De-Morgan’s theorem.

2. To realize SOP and POS functions after K map reduction.

De morgan’s Theorem

𝐴. 𝐵̅̅ ̅̅ ̅ = �̅� + �̅�

𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅ = �̅�. �̅�

 Procedure

 Verification of Demorgan’s theorem can be done using the circuits of fig 2.1 and 2.2. The

circuits of figure 2.1a and 2.1b produce the same output for the same sets of inputs A and B.

Verify DeMorgan’s first law. Similarly the circuits of fig.2.2a and 2.2b can be used to verify

the second law.

Realize the following functions through NAND gates.

𝑓 = ∑(0,1,2,5,7,9,10)+d(3,8,15)

𝑓 = ∏(0,1,2,3,8,9,10,13,15)+d(4,5,11,14)

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 17

Fig. 2.1 (b) �̅� + �̅�

Fig. 2.1 (a) 𝐴. 𝐵̅̅ ̅̅ ̅

14

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 18

Fig. 2.2 (a) 𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅

Fig. 2.2 (b) �̅� + �̅�

14

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 19

SOP

𝑓 = ∑(0,1,2,5,7,9,10)+d(3,8,15)

 K map

 𝒀 = �̅��̅�̅̅ ̅̅̅. �̅�𝑫̅̅ ̅̅ �̅��̅�̅̅ ̅̅

Fig. 2.3 Implementation of SOP

 �̅��̅� �̅�𝑫 𝑪𝑫 𝑪�̅�

�̅��̅� 1 1 X 1

�̅�𝑩 0 1 1 0

𝑨𝑩 0 0 X 0

𝑨�̅� X 1 0 1

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 20

POS

𝑓 = ∏(0,1,2,3,8,9,10,13,15)+d(4,5,11,14)

 K map

 𝒀 = 𝑩𝑨𝑫̅̅ ̅̅

Fig.2.4 Implementation of POS

 �̅��̅� �̅�𝑫 𝑪𝑫 𝑪�̅�

�̅��̅� 0 0 0 0

�̅�𝑩 X X 1 1

𝑨𝑩 1 0 0 X

𝑨�̅� 0 0 X 0

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 21

3. HALF ADDER AND FULL ADDER

Aim

1. To set up half adder circuit using NAND gates only and to verify the truth table.

2. To set up full adder circuit using XOR, AND and OR gates and to verify the truth table.

3. To set up full adder circuit using NAND gates only and to verify the truth table.

Half Adder

 A logic circuit used for the addition of two one bit signals is known as a half adder. Its logic

diagram and implementation using NAND gates is shown in Fig. 3.1.

Full Adder

 Addition of two multi bit numbers is performed serially one bit (column wise) at a time

from right to left. When two bits in column are added it is necessary that carry from the

addition in previous column is also added. The combinational logic circuit which

achieves this is called full adder. Fig. 3.2 shows the logic diagram of the full adder.

 Procedure

Wire up the circuit of the half adder using IC7400. Apply proper inputs and

verify the truth table. Assemble the full adder circuit using AND, OR and XOR gates

and verify the truth table. Assemble the full adder circuit NAND gates and verify the

truth table.

Questions

1. Design a full adder circuit using only NAND gates.

2. How will you use

a. A full adder as a half adder?

b. A full subtractor as a half subtractor?

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 22

 Table 3.1: Truth table of Half Adder

X Y S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Table 3.2: Truth table of Full Adder

X Y Cin S0 Cc

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 23

Fig.3.1 Half adder circuit using NAND gates

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 24

Fig. 3.2 Full adder circuit using XOR, AND and OR gates

Fig. 3.3 Full adder circuit using only NAND gates

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 25

4. 4 Bit Adder/Subtractor and BCD Adder

 Aim

1. To set up and verify the operation of a 4 bit adder using IC 7483.

2. To set up and verify the operation of a 4bit subtractor using IC 7483.

3. To set up and verify the operation of a BCD adder using IC 7483.

IC7483

IC7483 performs addition of two 4 bit binary numbers. These are full adders with their

sums brought out as S0, S1, S2, S3. 𝑆0 being the sum of the LSB column. The carryout from the

MSB column is available at pin 14; pin 13 is the carry input. The pin configuration of the IC is

given in Fig. 4.1.

 Procedure

4bit adder

Connect the circuit as shown in Fig. 4.2. The C𝑖𝑛 input is grounded and the A and B

inputs are applied at the appropriate input terminals. Verify the addition operation for various

values of the two numbers A and B.

4 bit subtractor

 The circuit is shown in figure 4.3. It performs the subtraction of 4 bit number B from another

A by the 2’s complement addition method. Wire up the circuit as shown with the input C𝑖𝑛 high.

Apply various values for numbers A and B and verify the subtraction operation.

4bit adder / subtractor

 The circuit is shown in figure 4.4. It performs addition / subtraction of 4 bit numbers A

and B. Wire up the circuit as shown with the input C𝑖𝑛 low / high. Apply various values for

numbers A and B and verify the addition and subtraction operation.

BCD adder

 The circuit is shown in figure 4.5. It performs BCD addition of 4 bit numbers A and B.

Wire up the circuit as shown with the input C𝑖𝑛 low. Apply various values for numbers A and

B and verify the BCD addition operation.

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 26

 A3 S2 A2 B2 Vcc S1 B1 A1

 Fig. 4.1: Pin Details

 Fig. 4.2: 4 Bit Adder

4 5 6 7 8 1 2 3

16 15 14 13 12 11 10 9

B 3 S 3 C out C in G nd B 0 A 0 S 0

 7483

Number 1 Number 2

Carry Adder Sum

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 27

 Fig. 4.3: 4 Bit Subtractor

Subtrahend Subtractor

 Borrow Difference

 Sum/Difference

Number 1/ Subtrahend
Number 2/
Subtractor

Carry/
Borrow

C in
 = 0 adder

 = 1 subtractor

Fig. 4.4: 4 Bit Adder/Subtractor

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 28

Fig. 4.5: BCD adder

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 29

5.a. BCD TO DECIMAL DECODER

 Aim

1. To study the operation of BCD to decimal decoder IC 7442.

BCD to Decimal Decoder

Using 10 nos. of 4-input NAND gates a BCD to decimal decoder can be assembled as

shown in Fig 5.a.1. ABCD are the BCD inputs and 0-9 are the outputs. The outputs are active

low.

IC7442

 7442 is a TTL BCD to decimal decoder with active high inputs and active low outputs and is

capable of driving LEDs. It uses inverters to obtain the complements of A, B, C, D inputs. It is

a 16 pin IC with pin numbers 1 to 7 as outputs 0 to 6, pin number 8 ground, pin numbers 9 to

11 as outputs 7 to 9, pin numbers 12 to 15 as inputs D, C, B, A and pin number 16 is Vcc.

Procedure

 Wire up the circuits of Fig. 5.a.2. Apply BCD inputs 0000 through 1001 and observe

the decimal outputs on the corresponding LEDs. Verify the truth table given below.

 Table 5.a.1: Truth table of BCD to decimal decoder

No D C B A Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

0 L L L L L H H H H H H H H H

1 L L L H H L H H H H H H H H

2 L L H L H H L H H H H H H H

3 L L H H H H H L H H H H H H

4 L H L L H H H H L H H H H H

5 L H L H H H H H H L H H H H

6 L H H L H H H H H H L H H H

7 L H H H H H H H H H H L H H

8 H L L L H H H H H H H H L H

9 H L L H H H H H H H H H H L

10 H L H L H H H H H H H H H H

11 H L H H H H H H H H H H H H

12 H H L L H H H H H H H H H H

13 H H L H H H H H H H H H H H

14 H H H L H H H H H H H H H H

15 H H H H H H H H H H H H H H

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 30

BCD
INPUT

Y 0

Y 1

Y 2

Y 3

Y 4

Y 5

Y 6

Y 7

Y 8

Y
 9

Questions

1. What is meant by priority reader?

2. Design a decimal to excess-3 encoder using NAND gates.

Fig. 5.a.1: BCD to decimal decoder

Fig. 5.a.2: BCD to decimal decoder wiring circuit

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 31

5.b.SEVEN SEGMENT DISPLAY AND DECODER/DRIVER

Aim

 To verify the truth table of the seven segments LED display using BCD to 7 segment decoder/driver.

7segment LED display

 A seven segment LED display consists of seven individual LEDs positioned as shown in Fig.

5.b.2, each diode forming a segment. These diodes are mounted on a common substrate and the

whole unit comes in a single package. For some seven segment LEDs, the anodes of the segment

diodes are made to terminate at a common point. To display a numeric digit in the common

anode seven segment LED, the anode segment is connected to +𝑉. The cathode pins of the

corresponding segment LEDs are grounded for displaying the required digit. The seven

segments of the display are termed a, b, c, d, e, f and g. There is one dot LED in the display

device. This is for displaying the decimal point wherever necessary.

 The cathodes of seven segment LEDs must be grounded through series resistances typically

330Ω each. The potential difference across the LED when forward biased is typically 1.6V-

2.5V and the current required is in the range of 5-20mA.

BCD to seven segment decoder

 IC7447 is a BCD to 7segment decoder/driver which offers active low, high sink current outputs

incorporates automatic leading and or leading edge zero blanking control (RBI and RBO).

Lamp tests may be performed at any time when the BI/RBO node is HIGH. An overriding

blanking input BI can be used to control the lamp intensity or to inhibit the outputs. The pin

details and the logic diagram of the device are shown in Fig.5.b.1. The pin details of the seven

segment display FND507 are given in Fig .5.b.2.

Procedure

 Connect the seven segment display and BCD to 7 segment decoder/driver. Verify the truth table by

applying proper inputs.

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 32

Table 5.b.1: Truth table for BCD to seven segment decoder

 INPUTS OUTPUTS

Fn LT RBI D C B A BI/RBO a b c d e f g note

0 H H L L L L H L L L L L L H A

1 H X L L L H H H L L H H H H A

2 H X L L H L H L L H L L H L

3 H X L L H H H L L L L H H L

4 H X L H L L H H L L H H L L

5 H X L H L H H L H L L H L L

6 H X L H H L H H H L L L L L

7 H X L H H H H L L L H H H H

8 H X H L L L H L L L L L L L

9 H X H L L H H L L L H H L L

BI X X X X X X L H H H H H H H B

RBI H L L L L L L H H H H H H H C

LT L X X X X X H L L L L L L L D

Notes:

A. BI/RBO serves as blanking input/ripple blanking output. BI and RBI must be open or

held high. Input may be high or low.

B. When a low level is applied to the blanking input all segment outputs got a high level

regardless of other inputs.

C. When ripple blanking input and other inputs A, B, C and D are at low level with the lamp

test input at high level all segment outputs go to a high level and RBO goes to low level

(response condition).

D. When BI/RBO is open or held at high and a low is applied to LT all segment outputs go

to low.

Questions

1. Explain the difference between encoder and decoder.

2. Explain the following terms:

a. Zero blanking

b. Leading zero blanking

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 33

Fig. 5.b.1: Pin diagram of IC7447

Fig. 5.b.2: 7 segments LED display using FND 507

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 34

Fig .5.b.3 : BCD to seven segment display wiring circuit

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 35

6 (a) MUX using gates and to study a MUX ICs

 Aim

To study a 4 : 1 multiplexer using gates and to study a MUX ICs

Multiplexer

 Multiplexer (Mux) is a combinatorial circuit which selects one of the inputs and route it

to the output. A multiplexer has data input lines, data select lines and output.

 The logic symbol of a 4: 1 multiplexer is shown in Fig. 6.a.1. According to the two bit

binary code on the data select inputs, corresponding data input line will be selected and routed

to the output.

From the truth table 6.a.1, it can be seen that output

𝑌 = 𝐷0𝑆1𝑆2 + 𝐷1𝑆1̅𝑆2 + 𝐷2𝑆1𝑆2̅ + 𝐷3𝑆1̅𝑆2̅

This Boolean expression can be realized using gates.

IC 74151

 It is an 8 : 1 multiplexer with 16 pin IC package. It has three data select inputs S0, S1

and S2 and an active low strobe input. The data inputs are D0 through D7. Three bit binary

number at the data select inputs decides the data input line that is to be directed to the output Y.

A logic low at the strobe input activates the chip. The pin diagram of IC 74151 is shown in

figure 6.a.2.

IC 74153

 It is a dual 4 : 1 multiplexer IC. It has four inputs in each section and Y0 and Y1 are the

corresponding outputs. G0 and G1 are the corresponding active low strobe inputs to these

sections. Select lines S1 and S0 are common for both sections. The pin diagram of IC 74153 is

shown in figure 6.a.3.

 Procedure

Multiplexer using gates

Set up the circuit as in figure 6.a.4. Input all four combinations at S1 S0 one by one, observe

corresponding output.

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 36

IC 74151

 Apply logic 0 to the strobe input. Apply logic 0 or 1 randomly to data inputs D0 through

D7. Apply binary numbers from 000 to 111 at select lines and observe the output Y from pin

no. 5 corresponding to the select line inputs.

IC 74153

 Apply logic 0 to the active low strobe input G0 and G1. Apply logic 0 or 1 randomly to

data inputs A0, B0, C0 and D0. Apply binary numbers from 00 to 11 at select lines and observe

the output Y0 from pin no. 7 corresponding to the select line inputs.

 Apply logic 0 or 1 randomly to data inputs A1, B1, C1 and D1. Apply binary numbers

from 00 to 11 at select lines and observe the output Y1 from pin no. 9 corresponding to the

select line inputs.

.Fig. 6 .a.1 4:1 MUX Table. 6.a.1 Truth

Table of 4:1 MUX

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 37

 Fig. 6.a.2

 Fig. 6.a.3

 Table. 6.a.2

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 38

Fig. 6.a.4 Implementation of 4:1 MUX using gates.

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 39

 6(b) Combinatorial circuits using MUX

Aim

To realize the following function using multiplexer IC

f = ∑m(0,1,3,6,8,9,10,12,13,14)

Theory

 Multiplexers can be used to realize logic circuits. A multiplexer with n number of select

lines can be used to realize an n variable Boolean expression. With additional logic gates or

circuits an n+1 variable Boolean expression can be realized with the same multiplexer.

 The implementation table is shown in table. 6.b.1.

 Each grouped pairs correspond to eight data inputs to the MUX. Top left pair indicates that

when ABC = 000, data input D0 should be 1. Bottom left pair indicates that when ABC = 001,

data input D1 should be same as D. Bottom right pair indicates that when ABC = 101, data input

D5 should be �̅� and so on.

 Table. 6.b.1 K Map

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 40

 Fig. 6.b.1: Pin diagram of IC74151

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 41

7. Study of IC7490 and IC7493

IC 7493

 This IC is a 4 bit binary counter which can be used in either mod 8 or mod 16

configurations. The logic figure of the IC is given in fig. 7.3. The reset inputs R1 and R2 are

active high and a high level at both inputs are necessary to reset all flip flops simultaneously.

All the 4 flip flops have their J and K inputs connected to Vcc . If clock is applied to input B,

the outputs will appear at QB, QC, QD and this is a mod 8 ripple counter. On the other hand, if

the clock is applied at the input A and QA is connected to input B, it is mod-16, 4-bit ripple

counter. The outputs are QA, QB, QC and QD.

IC 7490

 Fig 7.4 shows the basic internal structure of 7490. FFA is mod 2 counter and

FFB, FFC, FFD constitute a mod 5 counter. The mod 5 and mod 2 counter can be used

independently or in combination. If QA is connected to input B and the pulse to be counted are

applied at input A, the circuit is a BCD counter.

Fig. 7.1: Pin diagram of IC7490

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 42

 Fig. 7.2: Pin diagram of IC7493

Fig. 7.3: Connections of IC 7493

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 43

Fig. 7.4: Internal connections of IC 7490

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 44

8. Design of synchronous up, down & modulo N counters

 Aim

1. To study the design and implementation of 3 bit synchronous up/down counter.

2. To study the working of the 4-bit binary counter IC 7493 and the decade counter IC 7490

3. To set up a counter of modulus N using IC 7493

Synchronous up, down counter

A counter is a register capable of counting number of clock pulse arriving at its clock

input. Counter represents the number of clock pulses arrived. An up/down counter is one that

is capable of progressing in increasing order or decreasing order through a certain sequence. An

up/down counter is also called bidirectional counter. Usually up/down operation of the counter

is controlled by up/down signal. When this signal is high counter goes through up sequence and

when up/down signal is low counter follows reverse sequence.

State Diagram

Fig. 8.1: State Diagram

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 45

Table 8.1: Characteristics Table

Q Qt+1 J K

0 0 0 X

0 1 1 X

1 0 X 1

1 1 X 0

Fig. 8.2: Logic Diagram

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 46

Table 8.2: Truth Table

Input

Up/Down

Present State

QA QB QC

Next State

QA+1 Q B+1 QC+1

A

JA KA

B

JB KB

C

JC KC

0 0 0 0 1 1 1 1 X 1 X 1 X

0 1 1 1 1 1 0 X 0 X 0 X 1

0 1 1 0 1 0 1 X 0 X 1 1 X

0 1 0 1 1 0 0 X 0 0 X X 1

0 1 0 0 0 1 1 X 1 1 X 1 X

0 0 1 1 0 1 0 0 X X 0 X 1

0 0 1 0 0 0 1 0 X X 1 1 X

0 0 0 1 0 0 0 0 X 0 X X 1

1 0 0 0 0 0 1 0 X 0 X 1 X

1 0 0 1 0 1 0 0 X 1 X X 1

1 0 1 0 0 1 1 0 X X 0 1 X

1 0 1 1 1 0 0 1 X X 1 X 1

1 1 0 0 1 0 1 X 0 0 X 1 X

1 1 0 1 1 1 0 X 0 1 X X 1

1 1 1 0 1 1 1 X 0 X 0 1 X

1 1 1 1 0 0 0 X 1 X 1 X 1

Procedure

1. Connections are given as per circuit diagram.

2. Logical inputs are given as per circuit diagram.

3. Observe the output and verify the truth table.

Binary counter

 A binary counter can be constructed using clocked J-K flip flops. All the J and

K inputs are tied to +Vcc . The system clock drives the second and so on. Each flip flop toggles

with a negative transition at its clock input. A divide by N (modulo N) counter capable of

counting up to (N-1) requires n flip flops where 2n=N. For example, Mod 8 counter which can

count up to 7 requires 3 flip flops. It is called Modulo N counter because it has N different

output states.

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 47

IC 7493

 This IC is a 4 bit binary counter which can be used in either mod 8 or mod 16

configurations. The logic figure of the IC is given in fig. 7.3. The reset inputs R1 and R2 are active

high and a high level at both inputs are necessary to reset all flip flops simultaneously. All the 4 flip

flops have their J and K inputs connected to Vcc . If clock is applied to input B, the outputs will appear

at QB, QC, QD and this is a mod 8 ripple counter. On the other hand, if the clock is applied at the input

A and QA is connected to input B, it is mod-16, 4-bit ripple counter. The outputs are QA, QB, QC and

QD.

IC 7490

 Fig 7.4 shows the basic internal structure of 7490. FFA is mod 2 counter and

FFB, FFC, FFD constitute a mod 5 counter. The mod 5 and mod 2 counter can be used

independently or in combination. If QA is connected to input B and the pulse to be counted are

applied at input A, the circuit is a BCD counter.

Modulo N counter

 The modulus of a counter is the total number of states through which the

counter can progress. To construct a modulo N counter it is necessary to have a ripple chain of

n flip flops such that n is the smallest number for which 2n > N. IC 7493 whose pin details are

given in fig 7.2 has 4 flip flops and so using this IC a counter of any modulus up to 16 can be

set up. All flip flops of 7493 have direct reset inputs, which are active low. The output of a

NAND gate is connected to all the direct reset inputs of the flip flops. Using a proper feedback

connection, it is possible to reset all the flip flops at count N. This can be achieved by connecting

each input (R1, R2) of the NAND gate to the Q output of a flip flop which becomes 1 at count

N. If more than one flip flop outputs become 1 at count N, AND gates can be used to connect

these outputs to the reset inputs of the counter. For example, a modulo 13 counter can be set up

connecting QD and QC to R1 and through an AND gate and QA directly to R2

Procedure

 Wire up the circuit for mod 13 counter by connecting QA to B input and to R1 and QD

and QC to R2 through an AND gate. Connect LED indicators to QA, QB, QC and QD. Apply clock

manually to A input and verify that the counter is a mod 13 counter. Repeat for mod 9 and mod

11. In both these cases, QA is connected to the B input. The feedback to inputs are obtained

from QA, QB through an AND gate and QD direct for mod 11 and QA to R1 and QD to R2 for

mod 9.

Questions

1. How will you use the 7490 IC to design a symmetrical divide by 10 frequency divider?

2. Set up a circuit using 7490 IC to count up to 999.

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 48

Fig. 8.3: Binary Counter

Fig. 8.4: Decade counter

330Ω

330Ω

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 49

 9. Study of shift register IC 7495, ring counter and Johnsons counter

 Aim

1) To verify the parallel operation, shift left, rotate left, shift right and rotate right operations and

serial input operations on IC 7495.

2) To verify the operation of a ring counter and Johnsons counter.

Shift register

 A flip flop can be used to store one bit. A series of flip flops connected in

cascade is used to store a word. Such a cascade of flip flops is called a register. A shift register

is one, in which the information stored can be shifted one position at a time when one clock

pulse is applied. The data can be shifted in either direction (left or right). The shift register can

be used in four different configurations depending upon the way in which the data is entered

into and taken out of it. These are:

1) Serial input, serial output. 2) Parallel input, serial output.

 3) Serial input, parallel output. 4) Parallel input, parallel output.

IC 7495

 IC 7495 is a 4-bit shift register. The data can be entered both in serial as well as parallel

form. The data can be shifted in the right or left direction. The pin details of the IC are given in

fig 9.1.

Procedure

(1) Parallel load operation.

The truth table of IC 7495 is given as follows.

 INPUTS OUTPUTS

Mode

cntrl

clocks Seri

al

Parallel

M Ck 1

Right

Ck 2

Left

 A B C D QA QB QC QD Operation

1 X 1 X X X X X QAO QBO QCO QDO

1 X ↓ X a b c d a b c d Parallel-in

1 X ↓ X QB QC QD d QB QC QD d Shift-left

0 1 0 X X X X X QAO QBO QCO QDO

0 ↓ X E X X X X E QAn QBn QCn Serial-in

Shift-right

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 50

*Shift left operation requires external connection of QB to A, QC to C. Serial data is entered at input

D.

Notes:

1. a, b, c, d, e are the levels of steady state inputs at A, B, C, D and serial inputs respectively.

2. QAO, QBO, QCO, QDO are levels of QA, QB, QC, QD respectively before the indicated steady

state input conditions have been established.

3. QAn, QBn, QCn, QDn are levels of QA, QB, QC, QD respectively before the most recent high

to low transition (↓) of the clock has been applied.

4. X means don’t care (any input including transition).

 The mode control and shift left pins are held high and the 4 bit data is fed to the A B C D

input pins. The right shift and serial input pins can be high or low (don’t care). Data gets loaded

into the Register when the shift left pin is made low by applying a pulse. (i.e., during a high to

low transition of the signal).

(2) Shift right operation

 Connect mode control to logic 0 and apply serial data at the serial

input terminal starting from LSB as in fig 9. 2. Apply clock pulse at right shift terminal pin

9 and observe the outputs QA, QB, QC and QD. The output can be taken in parallel form or

in serial form. For taking output in the serial form apply clock pulse to right shift terminal

and take the output at QD.

(3) Shift left operation

 Connect mode control to logic 1. Connect QB to A, QC to B and QD

to C as in fig 9. 3. Apply serial data at the D input starting from the MSB. Apply the clock

pulses at left shift (pin.no.8) and observe the outputs at QA, QB, QC, QD. Verify the left shift

operation. Parallel output can be obtained at QA, QB, QC, QD and serial output at QA with

the clock pulse applied at left shift (pin.no.8).

(4) Rotate operation (Right / Left)

 During the right shift operation, if QD is connected to SERIAL-IN

pin, the 4 bit sequence will rotate clockwise (right) i.e., QA assumes QD state, QB that of QA,

QC that of QB, QD that of QC.

 For rotating the bits anticlockwise, the connections are the same as

for the left shift operation except that QA is now connected to the D input pin. For successive

left shift operations the bit rotates anticlockwise.

Ring Counter

 In the shift register (see fig.9.4), if the Q output of the last stage flip flop QD (pin

10) is connected to the serial input (pin 1) a ring counter is obtained.

Johnsons Counter

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 51

 In Johnsons counter, the �̅� output of the last stage flip flop QD (pin 10) is

connected to the serial input (pin 1). (See fig. 9.5)

Questions

(1) How will you cascade the IC 7495 to obtain an 8-bit shift register?

(2) How will you use a shift register to multiply or divide a number by 2?

 Fig. 9.1: Pin details of IC 7495

 Fig. 9.2 : Right shift register using IC 7495

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 52

Fig. 9.4: Ring Counter using 7495

Fig. 9.3: Left shift register using 7495

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 53

Fig. 9.5 :

 Johnson Counter using 7495

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 54

10. VHDL implementation of full adder, 4 bit magnitude comparator

Aim

1. To set up magnitude comparator using IC 7485 and verify its function table

2. To study VHDL implementation of Full Adder.

3. To study VHDL implementation of 4 bit magnitude comparator.

Software used:

 XILINX 8.1 Software installed in a PC.

Theory

VHDL is an acronym for Very high speed integrated circuit (VHSIC) Hardware Description

Language which is a programming language that describes a logic circuit by function, data flow

behavior, and/or structure. This hardware description is used to configure a programmable logic

device (PLD), such as a field programmable gate array (FPGA), with a custom logic design.

The general format of a VHDL program is built around the concept of BLOCKS which are the

basic building units of a VHDL design. Within these design blocks a logic circuit of function

can be easily described.

A VHDL design begins with an ENTITY block that describes the interface for the design. The

interface defines the input and output 1ogic signals of the circuit being designed. The

ARCHITECTURE block describes the internal operation of the design. Within these blocks are

numerous other functional blocks used to build the design elements of the logic circuit being

created.

After the design is created, it can be simulated and synthesized to check its logical operation.

SIMULATION is a bare bones type of test to see if the basic logic works according to design

and concept. SYNTHESIS allows timing factors and other influences of actual field

programmable gate array (FPGA) devices to effect the simulation thereby doing a more

thorough type of check before the design is committed to the FPGA or similar device.

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 55

VHDL Program Structure

Fig. 10.1 VHDL Program Structure

entity entity-name is

[port(interface-signal-declaration);] end [entity]

[entity-name]; architecture architecture-name of

entity-name is

[declarations]

Begin architecture body end

[architecture] [architecture-name];

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 56

Fig. 10.1: Full Adder

Table 10.1: Truth table of full adder

Inputs Outputs

A B Cin Cout S

0 0 0 0 0

1 0 0 0 1

0 1 0 0 1

1 1 0 1 0

0 0 1 0 1

1 0 1 1 0

0 1 1 1 0

1 1 1 1 1

Program

Library IEEE;

Use ieee.std_logic_1164_all;

Use ieee.std_logic_arith_all;

 Entity FA_2 is

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 57

Port (a, b, cin: in bit; s, c: out bit);

End FA_2;

Architecture FA_2_beh of FA_2 is

Begin

Process (a, b,cin)

Begin

S<=a XOR B XOR Cin;

C<= (a and b) OR (a and cin) OR (b and cin);

End process;

End FA_2_beh;

Questions

1. What is full adder?

2. Using which gates we design the full adder?

a) 4-Bit Magnitude Comparator using IC 7485

IC7485

 IC7485 is a 4 bit magnitude comparator. Two 4 bit numbers A = A3, A2, A1, A0 and

B = B3, B2, B1, B0 can be compared to give output at one of the pins > out, A = B out, A < B

out, when the specified condition is satisfied. Words of greater lengths can be compared by

connecting comparators in cascade. The > , < 𝑎𝑑 = outputs of a stage handling less

significant bits are connected to the corresponding > , < 𝑎𝑑 = inputs of the next stage

handling more significant bits. The stage handling the least significant bit must hav1e a high

level applied to A = B input. The pin configuration and the function table are given below.

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 58

Table 10.2: Function table

COMPARING INPUTS CASCADING

INPUTS

OUTPUTS

A3,B3 A2,B2 A1,B1 A0,B0 A>B A<B A=B A>B A<B A=B

A3>B3 X X X X X X H L L

A3<B3 X X X X X X L H L

A3=B3 A2>B2 X X X X X H L L

A3=B3 A2<B2 A1>B1 X X X X L H L

A3=B3 A2=B2 A1<B1 X X X X H L L

A3=B3 A2=B2 A1=B1 X X X X L H L

A3=B3 A2=B2 A1=B1 A0>B0 X X X H L L

A3=B3 A2=B2 A1=B1 A0<B0 X X X L H L

A3=B3 A2=B2 A1=B1 A0=B0 X X H L L H

Procedure

 Keeping the A = B input high apply appropriate input and verify the truth table. For

An > Bn apply 1 to An and 0 to Bn, similarly for An < Bn apply 0 to An and 1 to Bn. For A n = Bn try

both the cases of An = Bn = 0 and An = Bn = 1.

Fig. 10.2: Pin diagram IC7485

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 59

Fig. 10.3: Two bit magnitude comparator

b) VHDL Implementation of 4-Bit Magnitude Comparator

Fig. 10.4: 4-bit Magnitude Comparator

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 60

Program:

Library IEEE;

Use IEEE.std_logic_1164_all;

Use IEEE.std_logic_arith_all;

Entity COM_2 is

Port (a, b: in bit_vector (3 down to 0); z: out bit_vector (2 down to 0));

End COM_2;

Architecture COM_2_beh of COM_2 is

Begin

Process (a, b)

Begin

If (a=b) then

Z<=’100’;

Elsif (a<b) then

Z<=’010’;

Elsif (a>b) then

 Z<=’001’;

End if;

End process;

End COM_2_beh;

Precaution

Make sure that there is no syntax and semantic error.

Questions

1. What is comparator?

2. What are uses of comparator?

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 61

3. What is the voltage comparator?

4. What is the no. of outputs in 4- bit comparator?

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 62

II. MICROPROCESSOR AND EMBEDDED

 SYSTEMS EXPERIMENTS

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 63

1. Data Transfer Instructions using Different Addressing Modes and Block

Transfer

1. Write an ALP for loading registers A, B, C, D, E, H and L with single byte data addressing

using immediate addressing

MEMORY

ADDRESS

MACHINE

CODES

LABEL OPCODE OPERAND COMMENTS

2000 3E 01 START MVI A,01 Load A with 01

2002 06 02 MVI B,02 Load B with 02

2004 0E 03 MVI C,03 Load C with 03

2006 16 04 MVI D,04 Load D with 04

2008 1E 05 MVI E,05 Load E with 05

200A 26 06 MVI H,06 Load H with 06

200C 2E 07 MVI L,07 Load L with 07

200E EF END RST 05 Return to monitor

program

2. Write an ALP for loading registers B, C, D, E, H and L with same data using register

addressing

MEMORY

ADDRESS

MACHINE

CODES

LABEL OPCODE OPERAND COMMENTS

2020 3A 50 20 START LDA 2050 Load accumulator

with 2050

2023 47 MOV B, A Move the content

of A to B

2024 4F MOV C, A Move the content

of A to C

2025 57 MOV D, A Move the content

of A to D

2026 5F MOV E, A Move the content

of A to E

2027 67 MOV H, A Move the content

of A to H

2028 6F MOV L, A Move the content

of A to L

2029 EF END RST 05 Return to monitor

program

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 64

3. Write an ALP for loading register pairs BC, DE and HL with 16-bit data using immediate

addressing

MEMORY

ADDRESS

MACHINE

CODE

LABEL OPCODE OPERAND COMMENTS

2050 01 50 21 START LXI B, 2150 Load BC

 register pair

 with

2150

data

2053 11 51 21 LXI D, 2151 Load DE

 register pair

 with

2151

data

2056 21 52 21 LXI H, 2152 Load HL

 register pair

 with

2152

data

2059 EF END RST 05 Return

monitor

program

to

4. Write an ALP to copy a block of data from 4 memory locations to another 4 memory locations

using 8-bit data transfer addressing mode direct addressing.

MEMORY

ADDRESS

MACHINE

CODES

LABEL OPCODE OPERAND COMMENTS

2060 3A 50 22 START LDA 2250 Load accumulator

with 2250

2063 32 54 22 STA 2254 Accumulator

content stored in

2254

2066 3A 51 22 LDA 2251 Load data in 2251

to accumulator

2069 32 55 22 STA 2255 Accumulator data

stored in 2255

206C 3A 52 22 LDA 2252 Load data in 2252

to accumulator

206F 32 56 22 STA 2256 Accumulator data

stored in 2256

2072 3A 53 22 LDA 2253 Load data in 2253

to accumulator

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 65

2075 32 57 22 STA 2257 Accumulator data

stored in 2257

2078 EF END RST 05 Return to monitor

program

5. Repeat 4th ALP using 16-bit data transfer addressing mode direct addressing

MEMORY

ADDRESS

MACHINE

CODE

LABEL OPCODE OPERAND COMMENTS

2080 2A 50 20 START LHLD 2050 Data in 2050 to L

register and data

in 2051 to H

register

2083 22 54 20 SHLD 2054 L register content

to 2054 and H

register content to

2055

2086 2A 52 20 LHLD 2052 Data in 2052 to L

register and data

in 2053 to H

register

2089 22 56 20 SHLD 2056 L register content

to 2056 and H

register content to

2057

208C EF END RST 05 Return to

monitor program

6. Repeat 4th ALP using 16-bit data transfer addressing mode indirect addressing

MEMORY

ADDRESS

MACHINE

CODE

LABEL OPCODE OPERAND COMMENTS

 2093 21 50 20 START LXI H, 2050 Initialize HL pair

 2096 01 51 20 LXI B, 2051 Initialize BC pair

 2099 11 55 20 LXI D, 2055 Initialize DE pair

 209C 36 04 MVI M, 04 Set counter as 4

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 66

 209E 0A LOOP LDAX B Load content of

memory location

whose address is

in BC pair to

accumulator

 209F 12 STAX D Store content of

accumulator into

memory location

whose address is

in DE pair

 20A0 03 INX B Increment BC

pair

 20A1 13 INX D Increment DE

pair

 20A2 35 DCR M Decrement count

by 1

 20A3 C2 9E 20 JNZ LOOP Jump if non zero

 20A6 EF END RST 05 Return to

monitor program

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 67

2. Arithmetic Operations in Binary and BCD- Addition, Subtraction,

Multiplication and Division

1. Addition and subtraction of 8 bit numbers

Aim

To evaluate the expression X + Y – Z, where X, Y and Z are 8 bit numbers stored in memory.

Theory

Read the numbers X, Y and X from memory to register. Evaluate the expression. Store the

result in the memory.

Program

MEMORY

ADDRESS

MACHINE

CODE

LABEL OPCODE OPERAND COMMENTS

2000 21 00 21 START LXI H,2100 Initialize

memory pointer

2003 7E MOV A, M Load X

register A

in

2004 23 INX H Pointer to Y

2005 46 MOV B, M Load Y

register B

in

2006 23 INX H Pointer to Z

2007 4E MOV C, M Load Z

register C

in

2008 88 ADD B Sum X+Y

register A

in

2009 91 SUB C X+Y-Z

register A

in

200A 23 INX H Pointer to store

the result

200B 77 MOV M, A Store result to

memory

200C EF END RST 05 Return to

monitor program

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 68

 Observations

 Memory location Data

Input

Output

2. BCD Addition

Aim

To find the sum of two 8 bit (2 digit) BCD numbers.

Theory

Add the two BCD numbers using ADD and adjust using DAA.

Program

MEMORY

ADDRESS

MACHINE

CODE

LABEL OPCODE OPERAND COMMENTS

2060 21 00 21 START LXI H,2100 Initialize

memory pointer

2063 7E MOV A, M Load first data

2064 23 INX H Pointer to second

data

2065 86 ADD M Add both

number

2066 27 DAA Convert sum to

BCD

2067 23 INX H Pointer to save

sum

2068 77 MOV M, A Store sum in

memory

2069 EF END RST 05 Return to

monitor program

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 69

OBSERVATIONS

 Memory location Data

Input

 2100 0A

 2101 2B

Output

 2102 3B

3. Multi Precision Subtraction

Aim

To find the difference of two 16 bit numbers stored in memory.

Theory

The two 16 bit numbers are stored in consecutive memory locations. Lower byte of first

number is stored in the first memory location, then higher byte of the first number, then

lower and higher byte of second number, Lower byte of second number is first

subtracted from the lower byte of first number. Then higher byte of second number is

subtracted with borrow from higher byte of first number.

Program

MEMORY

ADDRESS

MACHINE

CODE

LABEL OPCODE OPERAND COMMENTS

2000 21 00 21 START LXI H,2100 Initialize

memory pointer

2003 7E MOV A, M Load X in

register A

2004 23 INX H Pointer to higher

digits if first

number

2005 46 MOV B, M Higher digits in B

2006 23 INX H Pointer to lower

digits of second

number

2007 4E MOV C, M Lower digits in C

2008 23 INX H Pointer to higher

digits of second

number

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 70

2009 56 MOV D, M Higher digits in D

200A 91 SUB C Subtract

 lower

digits

200B 23 INX H Pointer to save

result

200C 77 MOV M, A Store lower

result

200D 78 MOV A, B Higher digits in A

200E 9A SBB D Subtract higher

digit with borrow

200F 23 INX H Pointer to save

result

2010 77 MOV M, A Store higher

result

2011 EF END RST 05 Return to

monitor program

Observations

 Memory location Data

Input

 2100 09

 2101 09

 2102 01

 2103 01

Output

 2104 08

 2105 08

4. Binary Multiplication

Aim

To perform the multiplication of the two binary numbers by repeated addition and shift &

add method

Repeated addition method

Algorithm

i. Start

ii. Get the multiplicand

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 71

iii. Get the multiplier

iv. Initialize product <- 0

v. Product <- product + multiplicand and multiplier <- multiplier – 1

vi. If multiplier = 0, go to step 7 else go to step 5

vii. Store the result

viii. Stop

Program

MEMORY

ADDRESS

MACHINE

CODE

LABEL OPCODE OPERAND COMMENTS

2000 21 02 21 START LXI H,2102 Initialize

memory pointer

2003 46 MOV B, M Load multiplier

in B register

2004 11 00 00 LXI D, 0000 Initialize DE pair

as 0000

2007 2A 00 21 LHLD 2100 Load data in HL

pair

200A EB XCHG Exchange DE

with HL pair

200B 19 LP: DAD D Add

200C 05 DCR B Decrement

register B

200D C2 0B 20 JNZ LP If not 0 go to LP

2010 22 03 21 SHLD 2103

2013 EF END RST 5 Software

interrupt

Observations

 Memory location Data

Input

 2100 23

 2101 00

 2102 11

Output

 2103 53

 2104 02

Shift and add method

Algorithm

1. Start

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 72

2. Get the multiplier and multiplicand. Set bit counter equal to number of bits

3. Shift multiplier left by one bit

4. If MSB of the multiplier = 1, go to step 5 else go to step 6

5. Add multiplicand to partial product

6. Decrement bit counter. Shift partial sum left.

7. If bit counter = 0, store the result else go to step 3

8. Stop

Program description

Consider the example of multiplying two nibbles

Multiplicand 1010 x

Multiplier 0101

 ………

 0000

 01010

 000000

 0001010

 …………….

 0110010

This explains that if the MSB of the multiplier is 1, partial product is shifted to left and

the multiplicand is added to the partial product. If the bit of the multiplier is zero, only

shifting is done.

Program

MEMORY

ADDRESS

MACHINE

CODE

LABEL OPCODE OPERAND COMMENTS

 2000 2A 50 21 START LHLD 2150 Place content of

2150 in L

(multiplicand)

and 2151 in

H(Multiplier)

 2003 EB XCHG HL to DE

 2004 7A MOV A, D Multiplier D to

A and

multiplicand in E

 2005 21 00 00 LXI H, 0000 Clear HL

 2008 06 08 MVI B, 08 Register B to
rotation count

(8)

 200A 16 00 MVI D, 00 Initialize D

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 73

 200C 1F NXT BIT RAR Check if
multiplicand bit

is 1

 200D D2 11 20 JNC NO ADD If not

 stop

adding

 2010 19 DAD D Add

multiplicand to

HL

 2011 EB NO ADD XCHG Place

multiplicand in

HL

 2012 29 DAD H And shift left

 2013 EB XCHG Retrieve shifted

multiplicand

 2014 05 DCR B Decrement

counter

 2015 C2 0C 20 JNZ NXT BIT

 2018 22 52 21 SHLD 2152 Store result in

location 2152 &

2153

 201B CF END

Observations

 Memory location Data

Input

 2150 23

 2151 11

Output

 2152 53

 2153 02

5. Binary Division

Aim

To write an assembly language program for binary division. The 16 bit dividend is in

memory location 2100H and 2101H and the divisor in 2102H. The quotient and the

remainder should be stored in 2103H and 2104H respectively.

Algorithm

1. Start

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 74

2. Get the dividend and divisor, initialize counter for 8 bits

3. Shift left the dividend and quotient

4. If divisor > dividend, go to step 6 else go to step 5

5. Dividend = dividend – divisor

6. Decrement counter

7. If count = 0, store the result, else go to step 3

8. Stop

Program

MEMORY

ADDRESS

MACHINE

CODE

LABEL OPCODE OPERAND COMMENTS

2000 21 00 21 START LXI H, 2100 Initialize HL pair
as memory

pointer

2003 46 MOV B, M Load divisor in

B

2004 23 INX H Increment HL

2005 7E MOV A, M Load dividend to

accumulator

2006 23 INX H Increment HL

2007 0E 00 MVI C, 00 Initialize

quotient as 00

2009 B8 CMP B

200A DA 13 20 JC LP

200D 90 LP1 SUB B Subtract

dividend

 and

divisor

200E 0C INR C Increment

contents of C

200F B8 CMP B Is dividend less

than divisor

2010 D2 0D 20 JNC LP1 If not jump to

LP1

2013 77 LP MOV M, A Store remainder

at 2102

2014 23 INX H Increment HL

2015 71 MOV M, C Store quotient at

2103

2016 EF END RST 05 Software

interrupt

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 75

Observations

 Memory location Data

Input

 2100 04

 2101 08

Output

 2102 00

 2103 02

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 76

3. Logical Instructions – Sorting of Arrays

1. Sorting of arrays in ascending order

Aim

To sort ten bytes of data initially stored in memory location starting from XX00H onwards, in

ascending order.

Algorithm

1. Start

2. Initialize cycle counter, compare counter and address pointer

3. Bring first data into accumulator

4. If accumulator < next data, go to step 6 else go to step 5

5. Exchange data

6. Decrement comparison counter

7. If comparison counter = 0, go to step 8 else go to step 4

8. Decrement cycle counter

9. If cycle counter = 0, stop else go to step 3

Program description

Program uses the bubble sort technique. In this type of sorting, first and second data will

be compared and the bigger will be kept in the third address and so on. After on cycle

(ie., N-1 comparisons), largest number will be kept in the last address. In the second

cycle of bubble sort (ie., N-2 comparisons) second largest number will be stored in the

last but one address.

Program

MEMORY

ADDRESS

MACHINE

CODE

LABEL OPCODE OPERAND COMMENTS

2000 21 00 21 LP2 LXI H, 2100 Initialize HL pair
as memory

pointer

2003 0E 07 MVI C, 07 Set counter as 8

2005 06 00 MVI B, 00 Set B = 0

2007 7E LP1 MOV A, M Get first data in

accumulator

2008 23 INX H Increment HL

2009 BE CMP M Compare

 first and

second

200A DA 14 20 JC LP

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 77

200D 56 MOV D, M

200E 77 MOV M, A

200F 2B DCX H

2010 72 MOV M, D

2011 23 INX H Increment HL

2012 06 01 MVI B, 01

2014 0D LP DCR C

2015 C2 07 20 JNZ LP1

2018 05 DCR B

2019 CA 00 20 JZ LP2

201C EF END RST 05 Software

interrupts

Observations

 Memory location Data

Input

2100 07

2101 06

2102 08

2103 04

2104 01

2105 05

2106 03

2107 02

Output

2100 01

2101 02

2102 03

2103 04

2104 05

 2105 06

 2106 07

 2107 08

2. Sorting of array in descending order

Aim

Modify the above algorithm to sort in descending order by changing the step 4 (If accumulator

> next data, go to step 6 else go to step 5)

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 78

Program

MEMORY

ADDRESS

MACHINE

CODE

LABEL OPCODE OPERAND COMMENTS

2000 21 00 21 LP2 LXI H, 2100 Initialize HL pair
as memory

pointer

2003 0E 07 MVI C, 07 Set counter as 8

2005 06 00 MVI B, 00 Set B = 0

2007 7E LP1 MOV A, M Get first data in

accumulator

2008 23 INX H Increment HL

2009 BE CMP M Compare first and

second

200A D2 14 20 JNC LP

200D 56 MOV D, M

200E 77 MOV M, A

200F 2B DCX H

2010 72 MOV M, D

2011 23 INX H Increment HL

2012 06 01 MVI B, 01

2014 0D LP DCR C

2015 C2 07 20 JNZ LP1

2018 05 DCR B

2019 CA 00 20 JZ LP2

201C EF END RST 05 Software

interrupts

Observations

 Memory location Data

Input

 2100 10

 2101 0A

2102 01

2103 04

2104 06

2105 08

2106 0D

 2107 0F

Output

 2100 10

 2101 0F

2102 0D

2103 0A

2104 08

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 79

4. Binary to BCD conversion and vice versa

1. Binary to BCD conversion

Aim

Write an assembly language program to convert 8-bit binary to BCD.

Algorithm

1. Start

2. Set pointer of datum and initialize counter

3. Move datum to accumulator

4. Subtract 64H from accumulator till result becomes negative

5. Cancel the last subtraction and store the quotient and the remainder

6. Divide the remainder further by 10, by repeated subtraction by 0A

7. Store the two quotients and the final remainder

8. Stop

Program description

0 to 255 is the range of binary numbers allowed in this program. The binary number will be broken

down into hundred, tens and units.

Program

MEMORY

ADDRESS

MACHINE

CODES

LABEL OPCODE OPERAND COMMENTS

 2000 3A 00 F1 START LDA F100H

 2003 47 MOV B, A Move the content

of A to B

 2004 16 64 MVI D, 64H

 2006 CD 1A 20 CALL BCD

 2009 61 MOV H, C Move the content

of C to H

 200A 16 0A MVI D, 0AH

 200C CD 1A CALL BCD

 200F 79 MOV A, C

 2010 07 RLC

 2011 07 RLC

 2012 07 RLC

 2013 07 RLC

 2014 B0 ORA B

 2015 6F MOV L, A

 2016 22 01 F1 SHLD F101H

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 80

 2019 76 HLT

 201A 0E 00 BCD MVI C, 00H

 201C 78 MOV A, B

 201D 92 RPTS SUB D

 201E DA 25 20 JC NC

 2021 0C INR C

 2022 C3 1D 20 JMP RPTS

 2025 82 NC ADD D

 2026 47 MOV B, A

 2027 C9 RET

Observations

 Memory location Data

Input

 F100 FFH

Output

 F101 55

 F102 02

2. BCD to binary conversion

Aim

Write an assembly language program to convert BCD data to binary data using 8085 microprocessor

kit.

Algorithm

1. Start the microprocessor

2. Get the BCD data in accumulator and save it in register ‘E’

3. Mark the lower nibble of BCD data in accumulator

4. Rotate upper nibble to lower nibble and save it in register ‘B’

5. Clear the accumulator

6. Move 0AH to ‘C’ register

7. Add ‘A’ and ‘B’ register

8. Decrement ‘C’ register. If zf = 0, go to step 7

9. Save the product in ‘B’

10. Get the BCD data in accumulator from ‘E’ register and mark the upper nibble

11. Add the units (A-ug) to product (B-ug)

12. Store the binary value in memory

13. End the program

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 81

Program

MEMORY

ADDRESS

MACHINE

CODES

LABEL OPCODE OPERAND COMMENTS

4100 3A 00 42 START LDA 4200 Get the data in ‘A’

4103 5E MOV E, A Save in E register

4104 E6 F0 ANI F0 Mark the lower

nibble

4106 07 RLC Rotate the upper

4107 07 RLC To lower nibble

4108 07 RLC And save in

4109 07 RLC Register B

410A 47 MOV B, A Move it from A to

B

410B AF XRA A Clear the

accumulator

410C 0E 0A MVI C, 0A Initialize C

 as ‘0A’

410E 08 REP

410F 0D DCR C Decrement C

register

4110 C2 0E 41 JNZ Jump till value C

is 0

4113 47 MOV B, A Move the value in

A to B

4114 7B MOV A, E Get the BCD in A

4115 E6 0F ANI 0F Mark the upper

nibble

4117 80 ADD B Add A and B

4118 32 01 42 STA 4201 Save the binary

data

411B 76 HLT Stop

Sample input

Input address Value

4200 68

Sample output

Output address Value

4201 44

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 82

5. Interfacing D/A Converter - Generation of simple waveforms

1. Generate a triangular wave

Aim

Generate a triangular wave of suitable frequency using DAC interface card.

Theory

A digital number can be converted into an analog number by selectively adding voltage which

is proportional to the weight of each binary digit. Different waveforms can be generated using

this DAC-0800 module.

Circuit description

Port A and Port B are connected to channel 1 and channel 2. A reference voltage of 8V is

generated using 723 and is given to verify points of DAC 0800. The standard output voltage

will be 7.98V when FE is outputted and will be OV when 00 is outputted. The output of DAC-

0800 is fed to the operational amplifier to get the final output as X OUT and Y OUT

The DAC interface can be used to generate various waveforms using a microprocessor. In most

of the DAC cards the digital outputs from the port A and port B of 8255 are separately converted

to analog signals by DAC.

The reference voltage needed for the DACs can be obtained from an on-board voltage regulator.

The output from the DACs vary between 0-7.98V corresponding to values between 00 to FF.

To use DAC initialize 8255 in mode 0 with port A and port B as output ports. Output the data

on the appropriate port, and observe the output waveform on an oscilloscope.

Algorithm

1. Initialize digital data 00.

2. Increment data by 1.

3. If data is not equal to FF, go to step 2, 4. Decrement data by 1.

5. If data is not equal to 00, go to step4,

6. Loop to step 2.

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 83

Program

MEMORY

ADDRESS

MACHINE

CODE

LABEL OPCODE OPERAND COMMENTS

2000 3E 80 START MVI A, 80H Initialize

8255 mode 0

2002 D3 03 OUT 03H Port A and
Port B are

outputs

2004 AF XRA A Start value

00H

2005 D3 00 LOOP1 OUT 00H Out to DAC

2007 3C INR A Increment

DAC input

2008 FE FF CPI FFH Check for

peak value

200A C2 05 20 JNZ LOOP1 No loop back

200D D3 00 LOOP2 OUT 00H Out to DAC

200F 3D DCR A Decrement

the DAC

input

2010 C2 0D 20 JNZ LOOP2 Minimum
value not
reached loop

back

2013 C3 05 20 END JMP LOOP1 Repeat

Procedure

1. Connect the interface card to the microprocessor kit and CRO

2. Connect the output of DAC to channel 1 of CRO

3. Enter and execute the program. Observe the triangular output waveform on the CRO.

2. Generate a ramp wave

Aim

Generate a ramp wave using a microprocessor kit and a DAC interface card.

Algorithm

1. Initialize digital data 00

2. Increment data by 1

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 84

3. Loop 2 Program

MEMORY

ADDRESS

MACHINE

CODES

LABEL OPCODE OPERAND COMMENTS

2000 3E 80 START MVI A, 80H Initialize 8255

2002 D3 03 OUT 03H

2004 3E 00 MVI A, 00H

2006 D3 00 BACK OUT 00H

2008 3C INR A

2009 C3 06 20 END JMP BACK

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 85

6. INTERFACING A/D CONVERTER

Aim

To convert an analog 0-5V signal to 8bit digital value (00 to FF) and display using a sevensegment

display.

Theory

This circuit requires an ADC IC (0809), Programmable peripheral interface(PPI)8255. The

ADC 0809 is an 8-bit digital to analog converter with 8 channel inbuilt multiplexes and it

converts analog voltage input Vi to an 8-bit digital output(D7-Do), It uses the principle of

successive approximation technique for conversion process. A pulse applied to the ADC's Start

of conversion terminal initiates the conversion process. The time taken for completion of

conversion is called conversion time. During tc the conversion process is taking place, ADC's

end of conversion (EOC) output go low. The EOC output returns high only when the conversion

is complete.

Features of 0809

• Resolution - 8 bits

• Conversion Time - 100ps at 640KHz

• Single supply voltage - +5V dc

• An8-channel multiplexer with latched control logic

• 0 to 5V analog input voltage

• Clock frequency 10KHz to 1280 KHz

• Conversion delay time (8 CLK period +2ms)

The heart of the single chip data conversion system is its 8-bit analog to digital converter it is

having 3 major sections 256 R ladder network, successive approximation register and

comparator.

Control word for 8255

1 0 0 1 1 0 0 0

= 98H

• Mode 0

• Port A Input port

• Port B Output

• Port Cu Input port

• Port CL Output port

Algorithm

1. Initialize 8255 Port A as input, Port B as output, Port Cu as Input port and Port CL as Output

port.

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 86

2. Select Channel 0 by sending address 00 through Port B.

3. Make ALE & SOC low, then high and again low to give a pulse at ALE and SOC.

4. Check EOC signal.

5. Is EOC high? If zero, loop to 4.

6. Read input data from Port A.

7. Store and display.

8. Loop to step 2.

Program

MEMORY

ADDRESS

MACHINE

CODES

LABEL OPCODE OPERAND

2000 31 FF 20 START: LXI SP,20FFH

2003 3E 98 MVI A,98H

2005 D3 03 OUT 03H

2007 3E 00 LOOP1: MV1 A,00H

2009 D3 01 OUT 01H

200B 3E 00 MVI A,00H

200D D3 02 OUT 02H

200F 3E 03 MVI A,03H

2011 D3 02 OUT 02H

2013 3E 00 MVI A,00H

2015 D3 02 OUT 02H

2017 DB 02 LOOP2: IN 02H

2019 E6 10 ANI 10H

201B CA 17 20 JZ LOOP2

201E 3E 04 MVI A,04H

2020 D3 02 OUT 02H

2022 DB 00 IN

00H

2024 32 F6 27 STA 27F6H

2027 CD 47 03 CALL 0347H

202A 11 00 00 LXI D,0000H

03BCH 202D CD BC 03 CALL

2030 CD FA 06 CALL 06FAH

2033 11 00 00 LXI D,0000H

2036 CD BC 03 CALL 03BCH

2039 C3 07 20 END: JMP LOOP1

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 87

Observations

Analog Input Digital Output

 4.84 FF

3.9 CE

3.52 B9

3.20 A9

2.7 8F

2.22 25

 1.64 57

 0.25 0E

 0.00 00

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 88

About arduino

Arduino is an open-source electronics platform based on easy-to-use hardware and software.

Arduino boards are able to read inputs - light on a sensor, a finger on a button, or a Twitter

message - and turn it into an output - activating a motor, turning on an LED, publishing

something online. You can tell your board what to do by sending a set of instructions to the

microcontroller on the board. To do so you use the Arduino programming language (based on

Wiring), and the Arduino Software (IDE), based on Processing.

Over the years Arduino has been the brain of

thousands of projects, from everyday objects to

complex scientific instruments. A worldwide

community of makers - students, hobbyists, artists,

programmers, and professionals - has gathered

around this open-source platform, their contributions

have added up to an incredible amount of accessible

knowledge that can be of great help to novices and

experts alike.

Arduino was born at the Ivrea Interaction Design Institute as an easy tool for fast prototyping,

aimed at students without a background in electronics and programming. As soon as it reached

a wider community, the Arduino board started changing to adapt to new needs and challenges,

differentiating its offer from simple 8-bit boards to products for IoT applications, wearable, 3D

printing, and embedded environments. All Arduino boards are completely open-source,

empowering users to build them independently and eventually adapt them to their particular

needs. The software, too, is open-source, and it is growing through the contributions of users

worldwide.

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 89

7. Blinking LED

Aim

Write a program to blink LED using Arduino.

Theory

Arduino programs are written in the Arduino Integrated Environment(IDE). Arduino IDE is a

special software running on your system that allows you to write sketches(synonym for program in

Arduino language) for different Arduino boards. Arduino UNO is an entry level Arduino board with

enough memory and processing capabilities. Pins 0 to 13 are digital pins, and any one of these can

be connected to LED(say pin no. 8). A 680Ω resistor is connected in series to limit the current

through the LED.

Circuit description

Connect the Arduino hardware to the computer via the USB cable provided. The USB port on the

Arduino provides a serial communication over the USB and appears as a virtual COM port to the

software on the computer. Open the Arduino IDE program, select the correct board from the tools

menu and write the program. Compile and upload the program to the Arduino board. The program

makes PIN 8 as output pin. Connect the LED and resistor as shown in the fig 7.1.

Program

int LED=8; //The digital pin to which LED is connected

void setup()

{pinMode(LED, OUTPUT); //Declaring pin 8 as output pin

}

void loop() //the loop runs again and again

{

digitalWrite(LED, HIGH); //turn ON the LED

delay(1000); //wait for 1 sec

digitalWrite(LED, LOW); //turn OFF the LED

delay(1000); //wait for 1 sec

}

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 90

 Fig. 7.1 Wired Circuit

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 91

8. Square Wave Generation

Aim

Write a program to generate square wave in Arduino.

Theory

Arduino UNO is an entry level Arduino board with enough memory and processing capabilities

for small projects like square wave generation (see appendix for technical specifications of

Arduino UNO). Pins 0 to 13 are digital pins, and can be used to view the generated square wave.

There are numerous techniques for square wave generation, and one has to select the suitable

technique based on the project. One way is to continuously make the output signal jump

between HIGH and LOW.

Circuit description

Connect the Arduino hardware to the computer via the USB cable provided. The USB port on

the Arduino provides a serial communication over the USB and appears as a virtual COM port

to the software on the computer. Open the Arduino IDE program, select the correct board from

the tools menu and write the program. Compile and upload the program to the Arduino board.

The program makes PIN 8 as output pin. So, view the square wave output in PIN 8 of the

Arduino using a CRO/DSO.

Program

int PIN = 8; void

setup()

{

 pinMode(PIN, OUTPUT);

} void

loop()

{

 int state = 0;

 while(1)

 {

 If(state == 0)

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 92

 {

 digitalWrite(PIN, LOW);

 state = 1;

 }

 else

 {

 digitalWrite(PIN, HIGH);

 state = 0;

 }

}

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 93

9. LED and LCD Display Interfacing

1. Seven segment led display interfacing

 Aim

Write a program to display numbers in a seven segment LED display.

Theory

Arduino can be used to interface a seven segment LED display. Seven segment displays are

of two types: common anode and common cathode. The difference is the polarity of the

LEDs and common terminal. In a common cathode seven-segment display, all seven LEDs

plus a dot LED have the cathodes connected to pins 3 and pin 8. To use this display, we

need to connect GROUND to pin 3 and pin 8 and, and connect +5V to the other pins to

make the individual segments light up. The following diagram shows the internal structure

of common-cathode seven-segment display:

Fig. 9.1 common cathode 7 segment led display

The seven segments are labelled a-g, with the dot being ‘dp’. The common anode display is

the exact opposite. In a common-anode display, the positive terminal of all the eight LEDs are

connected together and then connected to pin 3 and pin 8. To turn on an individual segment,

you ground one of the pins.

Turn on the required segments by outputting a HIGH signal to get the required digit displayed.

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 94

Circuit description

Fig. 9.2 Interfacing arduino and led display

Connect the pins described below:

2. Arduino Pin 2 to Pin 9 of LED display.

3. Arduino Pin 3 to Pin 10 of LED display.

4. Arduino Pin 4 to Pin 4 of LED display. 5. Arduino Pin 5 to Pin 2 of LED display. 6. Arduino

Pin 6 to Pin 1 of LED display. 7. Arduino Pin 8 to Pin 7 of LED display.

8. Arduino Pin 9 to Pin 6 of LED display.

9. Arduino GND to Pin 3 and Pin 8 of LED display, each connected with 220 ohm resistors.

Program

int a = 2; //For displaying segment "a" int

b = 3; //For displaying segment "b" int c

= 4; //For displaying segment "c" int d =

5; //For displaying segment "d" int e = 6;

//For displaying segment "e" int f = 8;

//For displaying segment "f" int g = 9;

//For displaying segment "g"

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 95

void setup() {

pinMode(a, OUTPUT); //A

pinMode(b, OUTPUT); //B

pinMode(c, OUTPUT); //C

pinMode(d, OUTPUT); //D

pinMode(e, OUTPUT); //E pinMode(f,

OUTPUT); //F pinMode(g,

OUTPUT); //G

} voiddisplayDigit(int

digit)

{

 //Conditions for displaying segment a

if(digit!=1 && digit != 4) digitalWrite(a,HIGH);

 //Conditions for displaying segment b if(digit

!= 5 && digit != 6) digitalWrite(b,HIGH);

 //Conditions for displaying segment c

if(digit !=2) digitalWrite(c,HIGH);

 //Conditions for displaying segment d if(digit != 1 && digit !=4 && digit !=7) digitalWrite(d,HIGH);

 //Conditions for displaying segment e if(digit

== 2 || digit ==6 || digit == 8 || digit==0)

digitalWrite(e,HIGH);

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 96

 //Conditions for displaying segment f if(digit != 1

&& digit !=2 && digit!=3 && digit !=7)

digitalWrite(f,HIGH); if (digit!=0 && digit!=1 &&

digit !=7) digitalWrite(g,HIGH);

} voidturnOff() {

digitalWrite(a,LOW);

digitalWrite(b,LOW);

digitalWrite(c,LOW);

digitalWrite(d,LOW);

digitalWrite(e,LOW);

digitalWrite(f,LOW);

digitalWrite(g,LOW);

} void loop() {

for(inti=0;i<10;i++)

 { displayDigit(i);

delay(1000);

turnOff();

 }

}

2. Interfacing LCD Display

Aim

Write a program to display a text on the LCD display.

Hardware required

i. Arduino UNO

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 97

ii. LCD Screen (Hitachi HD44780 driver compatible)

iii. 10k ohm potentiometer

iv. 220 ohm resistor

v. Hook-up wires

vi. Breadboard

Theory

The LiquidCrystal library allows you to control LCD displays that are compatible with the

Hitachi HD44780 driver. This example sketch prints "Hello World!" to the LCD and shows the

time in seconds since the Arduino was reset.

The LCDs have a parallel interface, meaning that the microcontroller has to manipulate several

interface pins at once to control the display. The interface consists of the following pins:

A register select (RS) pin that controls where in the LCD's memory you're writing data to. You

can select either the data register, which holds what goes on the screen, or an instruction register,

which is where the LCD's controller looks for instructions on what to do next.

A Read/Write (R/W) pin that selects reading mode or writing mode

An Enable pin that enables writing to the registers

8 data pins (D0 -D7). The states of these pins (high or low) are the bits that you're writing to a register

when you write, or the values you're reading when you read.

There's also a display contrast pin (Vo), power supply pins (+5V and Gnd) and LED Backlight

(Bklt+ and BKlt-) pins that you can use to power the LCD, control the display contrast, and

turn on and off the LED backlight, respectively.

The process of controlling the display involves putting the data that form the image of what you

want to display into the data registers, then putting instructions in the instruction register. The

LiquidCrystal Library simplifies this for you so you don't need to know the low-level

instructions.

The Hitachi-compatible LCDs can be controlled in two modes: 4-bit or 8-bit. The 4-bit mode

requires seven I/O pins from the Arduino, while the 8-bit mode requires 11 pins. For displaying

text on the screen, you can do most everything in 4-bit mode, so example shows how to control

a 2x16 LCD in 4-bit mode.

Circuit description

To wire your LCD screen to your board, connect the following pins:

i. LCD RS pin to digital pin 12

ii. LCD Enable pin to digital pin 11

iii. LCD D4 pin to digital pin 5

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 98

iv. LCD D5 pin to digital pin 4

v. LCD D6 pin to digital pin 3

vi. LCD D7 pin to digital pin 2

Additionally, wire a 10k pot to +5V and GND, with its wiper (output) to LCD screens VO pin

(pin3). A 220 ohm resistor is used to power the backlight of the display, usually on pin 15 and

16 of the LCD connector.

Fig. 9.3: Interfacing Arduino with LCD display

Program

// include the library code:

#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins

LiquidCrystallcd(12, 11, 5, 4, 3, 2);

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 99

void setup() {

 // set up the LCD's number of columns and rows: lcd.begin(16,

2);

 // Print a message to the LCD.

lcd.print("hello, world!");

}

void loop() {

 // set the cursor to column 0, line 1

 // (note: line 1 is the second row, since counting begins with 0):

lcd.setCursor(0, 1);

 // print the number of seconds since reset: lcd.print(millis()

/ 1000);

}

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 100

10. Motor Control

Aim

Write a program in Arduino IDE to control the speed and direction of a DC motor.

Hardware required

1. 1 x L298 bridge IC

2. 1 x DC motor

3. 1 x Arduino UNO

4. 1 x breadboard

5. 10 x jumper wires

Theory

A direct current, or DC, motor is the most common type of motor. DC motors normally have

just two leads, one positive and one negative. If you connect these two leads directly to a battery,

the motor will rotate. If you switch the leads, the motor will rotate in the opposite direction.

To control the direction of the spin of DC motor, without changing the way that the leads are

connected, you can use a circuit called an H-Bridge. An H bridge is an electronic circuit that

can drive the motor in both directions. H-bridges are used in many different applications, one

of the most common being to control motors in robots. It is called an H-bridge because it uses

four transistors connected in such a way that the schematic diagram looks like an "H."

You can use discrete transistors to make this circuit, but for this tutorial, we will be using the

L298 H-Bridge IC. The L298 can control the speed and direction of DC motors and stepper

motors and can control two motors simultaneously. Its current rating is 2A for each motor. At

these currents, however, you will need to use heat sinks.

The pinouts for the L298 are shown below.

Fig. 9.1: Pinouts of L298

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 101

The schematic above shows how to connect the L298 IC to control two motors. There are three

input pins for each motor, including Input1 (IN1), Input2 (IN2), and Enable1 (EN1) for Motor1

and Input3, Input4, and Enable2 for Motor2.

Since we will be controlling only one motor, we will connect the Arduino to IN1 (pin 5), IN2

(pin 7), and Enable1 (pin 6) of the L298 IC. Pins 5 and 7 are digital, i.e. ON or OFF inputs,

while pin 6 needs a pulse-width modulated (PWM) signal to control the motor speed.

The following table shows which direction the motor will turn based on the digital values of IN1

and IN2.

IN1 IN2 MOTOR

 BRAKE

1 FORWARD

 1 BACKWARD

1 1 BRAKE

IN1 pin of the L298 IC is connected to pin 8 of the Arduino while IN2 is connected to pin 9.

These two digital pins of Arduino control the direction of the motor. The EN A pin of IC is

connected to the PWM pin 2 of Arduino. This will control the speed of the motor.

To set the values of Arduino pins 8 and 9, we will use the digitalWrite() function, and to set the

value of pin 3, we will use the using analogWrite() function.

Circuit description

1. Connect 5V and ground of the IC to 5V and ground of Arduino.

2. Connect the motor to pins 2 and 3 of the IC.

3. Connect IN1 of the IC to pin 8 of Arduino.

4. Connect IN2 of the IC to pin 9 of Arduino.

5. Connect EN1 of IC to pin 2 of Arduino.

6. Connect SENS A pin of IC to the ground.

7. Connect the Arduino using Arduino USB cable and upload the program to the Arduino using

Arduino IDE software.

8. Provide power to the Arduino board using power supply, battery or USB cable. Program

constintpwm = 3; //initializing pin 3 as pwm constint in_1 = 8; constint in_2 = 9;

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 102

//For providing logic to L298 IC to choose the direction of the DC motor void

setup()

{

pinMode(pwm,OUTPUT) ; //we have to set PWM pin as output

pinMode(in_1, OUTPUT) ; //Logic pins are also set as output pinMode(in_2,

OUTPUT) ;

} void

loop()

{

//For Clock wise motion, in_1 = High, in_2 = Low

digitalWrite(in_1, HIGH) ; digitalWrite(in_2,

LOW) ; analogWrite(pwm,255);

/*setting pwm of the motor to 255 we can change the speed of rotation by changing pwm input

but we are only using arduino so we are using highest value to driver the motor */

//Clockwise for 3 secs

delay(3000) ;

//For brake digitalWrite(in_1,

HIGH) ; digitalWrite(in_2,

HIGH) ; delay(1000) ;

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 103

//For Anti Clock-wise motion - IN_1 = LOW, IN_2 = HIGH

digitalWrite(in_1, LOW) ; digitalWrite(in_2, HIGH) ;

delay(3000) ;

//For brake digitalWrite(in_1,

HIGH) ; digitalWrite(in_2,

HIGH) ; delay(1000) ;

 }

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 104

Appendix

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 105

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 106

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 107

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 108

Standard References

1. Thomas L. Floyd, Digital Fundamentals, Pearson Publications, 11th edition

2. M. Morris Mano, Digital Design, Pearson Publications

3. S. Salivahan, Digital Circuits and Designs, Oxford University Press

4. Ramesh Gaonkar, Microprocessor Architecture, Programming, and applications with the 8085,

Penram International Publishing

5. John Uffenbeck, Microcomputers and Microprocessors : The 8080, 8085 and Z-80

programming, interfacing and troubleshooting, Prentice Hall, College Div

6. Muhammed Ali Mazidi, The 8051 Microcontroller and Embedded systems using Assembly and

C, Pearson Publications

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 109

 RUBRICS

Rubrics used for continuous evaluation in every lab session:

All faculty dealing with lab courses shall share these rubrics with students, alongwith Course Outcomes.

No. Parameters Marks

Unsatisfactory

0-1

Developing

2-3

Satisfactory

4

Exemplary

5

1 Preparation 5

The student did not prepare

for the experiment with

necessary

circuits/designs/observation

tables/sample

waveforms/program

algorithms. Does not

indicate the date /

experiment no. in the

observation book.

The student has

prepared the

circuit

diagrams

/designs

/programs with

some of the

details omitted.

Requires major

corrections.

The student has

prepared the

circuit

diagrams

/design

/programs well

with most of

the details

attended to.

The

observation

book is

presented with

some details of

the experiment

plans and

expected

results.

Requires some

corrections /

guidance.

The student has

prepared the

circuit diagrams

/design /programs

well with all of

the details

attended to. The

observation book

shows evidence

of keen interest

by way of

presentation,

accuracy and

experiment plan.

Shows

independence. No

corrections are

required from the

faculty.

2 Viva 5

The student does not answer

any viva questions. Has no

idea about the principles

behind the experiment or

about the objectives.

The student has

no clear idea

about the

objectives of

the

experiments.

Answers a few

viva questions.

Does not

understand the

theoretical

principles well.

Needs

improvement.

The student

understands

some of the

objectives.

Answers most

of the

questions. With

some hints, the

student could

understand the

principles

behind the

experiments.

The student

understands all of

the objectives.

Answers all of

the questions.

The principles

behind the

experiment are

unambiguously

understood.

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 110

3 Performance 5

Circuit construction

/Program does not match

diagram of circuit /

algorithm and does not work.

Student does not know how

to troubleshoot and solve the

problem.

Circuit

construction

/Program has

several

problems.

Student finds it

difficult to

troubleshoot.

Requires

assistance. A

few partial

results were

obtained.

Circuit

construction /

Program

execution is

good with only

minor

omissions.

Student able to

troubleshoot,

with some

guidance.

Circuits

/Programs

function mostly

as planned.

Most of the

expected results

obtained.

Circuit

construction

/Programs

matches diagram

in model /

algorithm.

Appropriate

components are

used to represent

symbols.

Construction is

excellent and

carefully planned.

All precautions

adopted. Circuits

function

according to plan.

(In the case of

programming, all

test conditions

were satisfied).

All expected

results were

obtained. The

student even tries

to extend the

experiment

beyond the stated

basic objectives.

Student shows

independence.

4
Lab Report

/Documenting
5

Did not complete the report

in the same lab session or

next lab session.

Lab report

submitted in

time, but not

complete in all

respect. The

observations

are neither

dated nor

signed by the

student. The

inferences are

not drawn, and

conclusions not

presented. The

result graphs /

waveforms are

clumsy and

does not

provide scale /

labels.

Lab report

submitted in

time, and most

of the details

are presented.

Some of the

inferences are

presented but

not correct /

need

improvement.

The result

graphs /

waveforms

shown are neat

in an overall

sense, but lacks

details.

Observations

were dated and

signed by the

student.

Completed lab

report and

submitted in time.

Report is neat and

excellently

organised, with

date and

signature.

Inferences and

conclusions

presented show

excellent grasp of

the student in the

concepts. The

result graphs /

waveforms

presented are

having all the

required details.

Student shows

excellent abilities

to carry out

Digital Circuits and Embedded Systems Lab

 College of Engineering Trivandrum 111

experiment

independently.

